Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
نویسندگان
چکیده
Nanoscale electronics seeks to decrease the critical dimension of devices in order to improve performance while reducing power consumption. Single-walled carbon nanotubes fit well with this strategy because, in addition to their molecular size, they demonstrate a number of unique electronic, mechanical and electromechanical properties. In particular, theory predicts that strain can have a large effect on the band structure of a nanotube, which, in turn, has an influence on its electron transport properties. This has been demonstrated in experiments where axial strain was applied by a scanning probe. Theory also predicts that torsional strain can influence transport properties, which was observed recently in multiwalled nanotubes. Here we present the first experimental evidence of an electromechanical effect from torsional strain in single-walled nanotubes, and also the first measurements of piezoresistive response in a self-contained nanotube-based nanoelectromechanical structure.
منابع مشابه
Electromechanical responses of single-walled carbon nanotubes: Interplay between the strain-induced energy-gap opening and the pinning of the Fermi level
A comprehensive picture of electromechanical responses of carbon single-walled nanotubes SWNTs is obtained using ab initio density-functional theory and self-consistent -orbital Hamiltonian. We find a linear behavior of the energy gap of zigzag SWNTs as a function of the axial strain with different slopes for compression versus extension. Observed small changes in conductance even with a substa...
متن کاملDynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory
This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...
متن کاملOn the Mechanical Properties of Chiral Carbon Nanotubes
Carbon nanotubes (CNTs) are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry o...
متن کاملMolecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes
Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...
متن کاملTheoretical Elastic Properties of Single Walled Carbon Nanotubes
Carbon fiber nanotubes are a relatively new material with amazing physical and electrical properties. In this paper we report the results of the first-principles calculations for the elastic properties of several single-wall carbon nanotubes (SWNT) with diameters between 4 and 17 !. We show that the torsional and axial strain potential energy curves can be well described in terms of the experim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 2 7 شماره
صفحات -
تاریخ انتشار 2007